
Question		ion	Answer	Mark	Mark Guidance	
((a)	(i)	Adsorption ✓ (onto the stationary phase)		ALLOW adsorbtion or adsorb(s) or adsorbed spelled correctly at least once	
			Quality of Written Communication 'Adsorption' must be spelled correctly	1	DO NOT ALLOW anything that begins with ab	
	(a)	(ii)	0.2 ✓	1	ALLOW any value in the range 0.1 – 0.3	
	(4)	(")			IGNORE significant figures	
					DO NOT ALLOW fraction/percent as final answer	
	(a)	(iii)	Spot may contain more than one compound/component ✓	1	ALLOW compounds have similar <i>R</i> _f values/adsorptions	
	` '	. ,			OR compounds have not (fully) separated	
					OR B is spread over a large region	
					OR compounds are similar	
					IGNORE retention times	
((b)	(i)	GC separates the components/compounds		ALLOW chromatography for GC	
					ALLOW they have different retention times	
			AND			
			MS is compared to a database/reference \checkmark	1	ALLOW MS analyses compounds/gives structural	
					information/gives different mass spectra	
					ALLOW (uses) fragmentation	
					patterns/fragments/peaks/parts of the compound	
					DO NOT ALLOW MS identifies compounds (in question)	
					DO NOT ALLOW molecular ion alone/ M_r etc.	
		(ii)	nerol and geraniol AND		Compounds AND reason required for the mark	
			they are stereoisomers OR primary alcohols ✓	1	ALLOW they are <i>E</i> / <i>Z</i> isomers OR <i>cis-trans</i> isomers	
					ALLOW straight-chain alcohols OR unsaturated alcohols	
		(iii)	stereoisomers have the same structural formula		BOTH points required for the mark	
			AND			
			different 3D arrangements ✓	1	ALLOW different arrangements in space	
		(iv)			Circle must include the correct C=C double bond AND must	
					not extend further than the adjacent atoms in the main	
					chain,	
					ie limit is:	
				1		

Question	er	Mark	Guidance
(b) (v)	он * * //	2	ALL THREE chiral centres required for 2 marks ANY TWO chiral centres required for 1 mark If more than three asterisks are shown, mark incorrect asterisk(s) first
(C)	Correctly calculates amount of myrcene = $34/136$ OR 0.25 (mol) \checkmark Correctly calculates 60% yield of menthol = $0.25 \times 60/100$ OR 0.15 (mol) \checkmark Correctly calculates mass of menthol = $0.15 \times 156 = 23.4$ (g) \checkmark	3	ANNOTATIONS MUST BE USED ALLOW amount of myrcene × 60/100 ALLOW amount of menthol × 156 ALLOW alternative approach based on reacting masses (using same ECF principles as above): correctly calculates mass of myrcene that could be obtained from 34 g myrcene: mass = $34 \times 156/136 = 39$ (g) $\times 156 \checkmark$; ÷ 136 \checkmark 60% of 39 g = $39 \times 60/100 = 23.4$ (g) \checkmark ALLOW final answer to 2 or more significant figures correctly rounded Correct answer of 23.4 (g) with no working scores all 3 marks
	Total	12	

	Question	Answer	Mark	Guidance
2	(a)			ANNOTATIONS MUST BE USED
		a singlet for position 2 OR a singlet because it has no adjacent H's✓ A triplet for positions 4 and 6 OR a triplet because it has 2 adjacent H's ✓ A quintet for position 5 OR a quintet because it has four adjacent H's ✓	3	 ALLOW a response that implies a single peak OR 'no splitting' ALLOW a response that implies a splitting into three DO NOT ALLOW implications of more than one triplet ALLOW 'pentet' OR a response that implies a splitting into five OR multiplet ALLOW 1 mark for singlet and triplet and quintet/pentet/multiplet with no identification of protons Any suggestion that the oxygens cause a splitting scores a maximum of 2 marks. All 3 remaining splitting patterns correct 2 marks. Any 2 correct 1 mark. IF number labels for protons in diagram are not identified, ALLOW identification by chemical shifts for 2 marks max: singlet at 3.3–4.2 AND a triplet at 3.3–4.2 ✓ quintet/pentet/multiplet at 0.7–2.0 ✓
		Quality of Written Communication singlet OR triplet OR quintet OR pentet OR multiplet (see Guidance) must be spelled correctly at least once		

Question	er	Mark	Guidance
(b)	Number of peaks for other three isomers matched to structures: Any 2 correct for 2 marks $\checkmark \checkmark$ 1 correct for 1 mark \checkmark $\downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	5	ALLOW 'carbon environments' for peaks
	Correct structure shown: CH_3 CH_3 \checkmark	6	
	Tot	al 9	

Qu	estic	n Expected Answers	Marks	Additional Guidance	
3	(a)	infrared – 1 mark only shows (very broad) peak between 2500–3300 (cm ⁻¹) (due to O–H bond) ✓	3	ALLOW (very broad) peak around 3000 (cm ⁻¹) OR any stated value between 2500 and 3300 (cm ⁻¹) for O–H DO NOT ALLOW peak in range 3200–3550 (cm ⁻¹) IGNORE any reference to C=O or C–O as both are also present in an ester OR to fingerprint region	
		¹³ C NMR – 2 marks $(CH_3)_2CHCH_2COOH$ has 4 peaks (due to 4 different C environments) \checkmark $(CH_3)_3CCOOH$ has 3 peaks (due to 3 different C environments) \checkmark		ALLOW ^{<math>^{13}C NMR detects the number of/different C environments' for $1 \checkmark$, suitable example for the 2nd mark</math>}	
	(b)	 splitting pattern explains any two in terms of 'n + 1 rule' for two marks ✓✓ Explains any one peak for 1 mark ✓ singlet therefore adjacent C (if any) has no Hs multiplet OR split into 7 therefore adjacent Cs have lots of/6 Hs doublet therefore adjacent C is bonded to 1H must spell one of multiplet / heptet, singlet, doublet 	6	 1 mark for correct ester if two splitting patterns are correctly analysed ignore the third ALLOW singlet because next or bonded to an O ALLOW multiplet/heptet because next to 2 CH₃s ALLOW doublet because next to a CH 	
		<i>correctly</i> max = 2 marks chemical shifts		ALLOW tolerance on δ values; 3.6–3.8, 2.6–2.8 and 1.1–1.3	

PhysicsAndMathsTutor.com

 two marks if any two absorptions are identified correctly ✓✓ one mark if any one absorption is identified correctly ✓ peak ~3.7 (ppm) – bonded to an O peak ~2.7 (ppm) – indicates it is next to a C=O peak ~1.2 (ppm) – bonded to other Cs OR part of a chain max = 2 marks 		(ppm) ALLOW any two gets 2 marks, any one scores 1 mark HC—O HC—C R—CH 3.7 (ppm) 2.7 (ppm) 1.2 (ppm) ALLOW peaks labelled on the spectrum ALLOW singlet must be bonded to O, multiplet to C=O and doublet to CH or R for both chemical shift marks if two chemical shifts are correctly identified IGNORE the third
compound identified as $(CH_3)_2CHCOOCH_3 \checkmark \checkmark$ 2 marks compound identified as $CH_3COOCH(CH_3)_2 \checkmark$ 1 mark		
Total	9	

C	Questi	ion	Answer	Mark	Guidance
4	(a)		(Relative) solubility (in stationary phase) ✓	1	ALLOW how well the compound dissolves IGNORE retention time AND partition DO NOT ALLOW adsorption OR absorption
	(b)	(i)	Compound B AND M^* /molecular ion peak (at m/z) = 124 \checkmark	1	ALLOW Mr = 124 IGNORE compound B because $m/z = 124$ ALLOW $C_7H_8O_2^+ = 124$ OR $C_7H_8O_2 = 124$ ALLOW peak at (m/z =) 109 due to $HOC_6H_4O^+$ ALLOW peak at (m/z =) 109 due to loss of CH_3 IGNORE reference to other peaks in the spectrum
		(ii)	Compound (B) is less soluble in the stationary phase/ liquid	1	ORA Answer refers to the first compound to emerge from the column ALLOW compound (B) is more soluble in mobile phase/gas ALLOW compound interacts less with stationary phase/liquid OR compound interacts more with mobile phase/gas IGNORE compound adsorbs less IGNORE compound is not very soluble (comparison needed) IGNORE volatility OR reactivity

Answer	Mark	Guidance
reagent = $K_2Cr_2O_7$ AND H_2SO_4 \checkmark	3	ALLOW acidified dichromate
		ALLOW H⁺/any acid
		IGNORE concentration of acid
		ALLOW Na ₂ Cr ₂ O ₇ /Cr ₂ O ₇ ²⁻ /(potassium OR sodium) dichromate((VI))
		ALLOW acidified MnO ₄ ⁻
		ALLOW Tollens' reagent/ammoniacal silver nitrate
		IGNORE conditions
compound $C = CH_2OH$		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
		ALLOW ECF from incorrect compound C Check positions of OH groups
→ OH ✓		ALLOW esterification of phenol group
ester =		CH2OH COO COO COO COO COO COO COO COO CH2OH
	reagent = $K_2Cr_2O_7$ AND H_2SO_4 \checkmark compound C = CH_2OH OH \checkmark ester = CH_2OH $COOCH_2$	reagent = $K_2Cr_2O_7$ AND H_2SO_4 compound C = CH_2OH OH CH_2OH

Question	Answer	Mark	Guidance
(ii)	curly arrow from H [−] to $C^{\delta+}$ ✓	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC curly arrow must come from lone pair on H or negative charge on H
	dipole AND curly arrow from C=O bond to O ✓		curly arrow must come from the bond, not the carbon atom
	correct intermediate AND curly arrow to $H^+ \checkmark$		curly arrow must come from lone pair on O or negative charge on O and go to H or positive charge on H
			Where circles have been placed round charges, this is for clarity only and does not indicate a requirement
			ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
			ALLOW for second stage
	С СН		ОН
			IF H_2O is used it MUST show the curly arrow from the negative charge or lone pair on the oxygen atom of the intermediate to H in H_2O AND from the O—H bond to the O in H_2O . Dipole not required on water molecule
			Penalise missing –OH on intermediate only
			IGNORE product – already given credit in part (i)

(Quest	ion	Answer	Mark	Guidance
	(d)		OCH_3 OH OH OH OH OH OH OH OH	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW disubstitution at any positions on benzene ring
			Total	10	

C	luesti	on	Answer	Mark	Guidance
5	tuesti (a)	on	Answer FIRST react all with Tollens' reagent AND silver mirror/ppt/solid (formed) with compound D OR with Fehling's/Benedict's solutions AND (brick-red/orange) solid/precipitate (formed) with compound D	Mark 4	 ALLOW ammonia + silver nitrate for reagent ALLOW black solid/ppt ALLOW 'the aldehyde gives a silver mirror' ALLOW solid OR crystals OR ppt as alternatives for precipitate ALLOW correct structural OR displayed OR skeletal formulae
			NOTE: eliminates D $ \downarrow $		OR combination of above as long as unambiguous DO NOT ALLOW molecular formulae for organic structures IGNORE all references to 2,4-dinitrophenylhydrazine/Brady's ACCEPT acidified dichromate ALLOW blue/green blue IGNORE equation for oxidation of D ALLOW equation for partial oxidation
					O O

Que	stion	Answer	Mark	Guidance
				ALLOW alternative sequences
				e.g. FIRST react all with H ₂ SO ₄ AND K ₂ Cr ₂ O ₇
				colour change with C and D <i>eliminates E</i>
				At least one correct equation and structure of one product from either reaction required for the second mark. NB several possible products for the oxidation of D
				THEN react C and D with Tollens' distinguishes between C and D
(b)	н ^ө	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
				First curly arrow must come from either a lone pair on H or negative charge on H
		$\int_{0}^{ } O_{\delta-}$ curly arrow from H ⁻ to C ^($\delta+$) of correct C=O group		IF aldehyde reduced OR both carbonyls reduced DO NOT AWARD first mark (second, third and fourth marks can be awarded ECF)
		dipole correct AND curly arrow from C=O bond to $O^{(\delta-)}$,	IGNORE lack of C—H if entirely skeletal IGNORE curly arrows in second stage
		ÎΘ		
		correct intermediate with negative charge on O		Apply ecf to error in structure e.g. CH_2 missing from the chain or –COOH/-COH instead of –CHO
		OH correct product	~	IGNORE other products

Question	Answer				Mark	Guidance		
(c)								
	Compound	Compound C D I						
	Number of peaks	5	5	4				
	all correct ✓							
(d) (i)	• pent-2-ene H ₃ C • hexa-2,4-diene H H_3 C				3	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW C_2H_5CHO and CH_3CHO		
(d) (ii)					1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous		
		Total						